Paper 1 - Multiple choice

WEDNESDAY, 17 MAY
9:00 AM - 9:45 AM

Total marks - 25

Attempt ALL questions.
You may use a calculator.
Instructions for the completion of Paper 1 are given on page 02 of your answer booklet X857/76/02.

Record your answers on the answer grid on page 03 of your answer booklet.
Reference may be made to the data sheet on page 02 of this question paper and to the relationships sheet X857/76/22.

Space for rough work is provided at the end of this booklet.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	$m_{\text {e }}$	$9.11 \times 10^{-31} \mathrm{~kg}$
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Gravitational acceleration on Earth	g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Hubble's constant	H_{0}	$2.3 \times 10^{-18} \mathrm{~s}^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength (nm)	Colour	Element	Wavelength (nm)	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength (nm)	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	Melting point (K)	Boiling point (K)
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Total marks - 25

Attempt ALL questions

1. A cyclist is travelling along a straight, level road.

A velocity-time $(v-t)$ graph of the motion of the cyclist is shown.

Which pair of displacement-time $(s-t)$ and acceleration-time ($a-t$) graphs represent the motion of the cyclist?
A

B

C

D

E

2. A hot air balloon is moving vertically.

At a height of 50 m a sandbag is released.
The sandbag takes 3.0 s to reach the ground.
The effects of air resistance can be ignored.
The initial velocity of the sandbag on release is
A $\quad 2.0 \mathrm{~m} \mathrm{~s}^{-1}$ upwards
B $\quad 2.0 \mathrm{~m} \mathrm{~s}^{-1}$ downwards
C $\quad 17 \mathrm{~m} \mathrm{~s}^{-1}$ upwards
D $17 \mathrm{~m} \mathrm{~s}^{-1}$ downwards
E $\quad 31 \mathrm{~m} \mathrm{~s}^{-1}$ upwards.
3. The momentum of an object of mass 4 kg is $20 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.

The kinetic energy of the object is
A 10 J
B $\quad 50 \mathrm{~J}$
C 100 J
D 400 J
E 800 J .
4. A pendulum bob of mass m is released from rest at height h. The bob reaches a speed v at the lowest point of its swing.

Neglecting air resistance, the speed of the bob at its lowest point is doubled by
A changing the height to $4 h$
B changing the height to $2 h$
C changing the height to $\frac{h}{2}$
D changing the mass of the bob to $2 m$
E changing the mass of the bob to $\frac{m}{2}$.
5. A golfer strikes a golf ball as shown.

The ball leaves the club with an initial velocity of $74 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 31° to the horizontal.

Which row in the table shows the horizontal and vertical components of the initial velocity of the golf ball?

	Horizontal component of the initial velocity of the golf ball $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	Vertical component of the initial velocity of the golf ball $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
A	38	44
B	38	63
C	44	38
D	63	38
E	63	44

6. A satellite of mass 620 kg is placed into an Earth orbit of radius 23000 km .

The mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$.
The gravitational force that the satellite experiences from the Earth in this orbit is
A $\quad 4.7 \times 10^{2} \mathrm{~N}$
B $\quad 4.7 \times 10^{8} \mathrm{~N}$
C $\quad 1.1 \times 10^{10} \mathrm{~N}$
D $\quad 1.1 \times 10^{13} \mathrm{~N}$
E $\quad 6.9 \times 10^{13} \mathrm{~N}$.
7. Muons are created in the upper atmosphere of the Earth.

The mean lifetime of these muons in their frame of reference is $2.20 \mu \mathrm{~s}$.
The muons are travelling at 0.99 c relative to an observer on Earth.
The observer measures the mean lifetime of these muons as
A $1.56 \times 10^{-2} \mathrm{~s}$
B $\quad 2.20 \times 10^{-3} \mathrm{~s}$
C $\quad 1.11 \times 10^{-4} \mathrm{~s}$
D $1.56 \times 10^{-5} \mathrm{~s}$
E $\quad 3.10 \times 10^{-7} \mathrm{~s}$.
8. Evidence supporting the existence of dark energy comes from

A estimations of the mass of galaxies
B the darkness of the sky (Olbers' paradox)
C large numbers of galaxies showing redshift, rather than blueshift
D the accelerating rate of expansion of the Universe
E the abundance of the elements hydrogen and helium in the Universe.
9. A student makes the following statements about the emitted radiation from stellar objects.

I The peak wavelength of emitted radiation is longer for hotter objects than for cooler objects.
II A 'blue' star is likely to be hotter than a 'red' star.
III The radiation emitted per unit surface area per unit time is greater for hotter objects.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and III only
E II and III only
10. Which of the following diagrams represents the electric field pattern between two identical positively charged particles?

A

B

C

D

E

11. A neutron consists of one up quark and two down quarks.

A neutron is a
A gluon
B meson
C baryon
D lepton
E boson.
12. The following statement represents a nuclear fusion reaction.

$$
{ }_{1}^{3} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}
$$

The total mass of the particles before the reaction is $8.347 \times 10^{-27} \mathrm{~kg}$.
The total mass of the particles after the reaction is $8.317 \times 10^{-27} \mathrm{~kg}$.
The energy released in this reaction is
A $3.0 \times 10^{-29} \mathrm{~J}$
B $\quad 9.0 \times 10^{-21} \mathrm{~J}$
C $\quad 1.4 \times 10^{-12} \mathrm{~J}$
D $2.7 \times 10^{-12} \mathrm{~J}$
E $\quad 7.5 \times 10^{-10} \mathrm{~J}$.
13. A student makes the following statements about wave particle duality.

I The photoelectric effect is evidence supporting the particle model of light.
II Interference is evidence supporting the wave model of light.
III Photons of sufficient energy can eject electrons from the surface of metals.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and III only
E I, II and III
14. Electromagnetic radiation of frequency $9.0 \times 10^{14} \mathrm{~Hz}$ is incident on a clean, negatively charged metal surface.
The work function of the metal is $6.1 \times 10^{-19} \mathrm{~J}$.
There is no photoelectric emission from this metal caused by this radiation.
This is explained by the fact that
A photoemission can only occur from a positively charged metal surface
B the wavelength of the incident radiation is too short
C the frequency of the incident radiation is less than the threshold frequency of this metal
D the work function of the metal is less than the energy of the incident photons
E the number of photons per second incident on the surface of the metal is too low.
15. A ray of monochromatic light is incident on a grating. An interference pattern is observed on the screen.

The angle between the central maximum and the maximum observed at the edge of the screen is 29°.
The wavelength of the light is 605 nm .
The separation of the slits on the grating is $5.0 \times 10^{-6} \mathrm{~m}$.
The total number of maxima observed on the screen is
A 4
B 7
C 8
D 9
E 15.
16. Waves from coherent sources, S_{1} and S_{2}, produce an interference pattern. Maxima are detected at the positions shown.

The path difference $\mathrm{S}_{1} \mathrm{~K}-\mathrm{S}_{2} \mathrm{~K}$ is 154 mm .
The wavelength of the waves is
A 14.0 mm
B $\quad 15.4 \mathrm{~mm}$
C $\quad 25.7 \mathrm{~mm}$
D $\quad 28.0 \mathrm{~mm}$
E $\quad 30.8 \mathrm{~mm}$.
17. Which graph shows the relationship between frequency f and wavelength λ of photons of electromagnetic radiation?

A

B

C

D

E

18. A ray of monochromatic light travels from a crown glass block into water. The diagram shows three paths P, Q, and R for the ray of light in the water.

Which row in the table shows what happens to the speed and the wavelength, and the path the ray of light follows in the water?

	Speed	Wavelength	Path
A	decreases	decreases	R
B	decreases	decreases	P
C	stays the same	stays the same	Q
D	increases	increases	R
E	increases	increases	P

19. An AC power supply of negligible internal resistance is connected to an 8.0Ω resistor.

The rms voltage of the power supply is 5.0 V .
The peak power dissipated in the 8.0Ω resistor is
A 0.44 W
B $\quad 0.63 \mathrm{~W}$
C $\quad 1.4 \mathrm{~W}$
D $\quad 3.1$ W
E \quad 6.3 W.
20. Six 36Ω resistors are connected as shown.

The total resistance between points X and Y is
A 6.0Ω
B 8.0Ω
C $\quad 12 \Omega$
D 18Ω
E 24Ω.
21. A student carries out an experiment to determine the EMF and internal resistance of a battery using the circuit shown.

The resistance of the variable resistor is altered and readings of voltage V and current I are taken. These readings are used to produce the following graph.

Which row in the table shows the EMF and internal resistance of the battery?

	EMF (V)	Internal resistance $\mathbf{(\Omega)}$
A	2.0	6.0
B	5.0	0.50
C	5.0	2.0
D	6.0	0.50
E	6.0	2.0

22. One coulomb per volt is equivalent to one

A hertz
B farad
C ohm
D joule
E ampere.
23. A student makes the following statements about metals, insulators, and semiconductors.

I In some metals, the valence and conduction bands overlap and each band is partially filled.
II The band gap between the valence band and the conduction band in an insulator is large compared to the band gap in a semiconductor.
III An increase in temperature decreases the conductivity of a semiconductor.
Which of these statements is/are correct?
A I only
B II only
C I and II only
D I and III only
E II and III only
24. A group of students carry out an experiment to investigate how quantity P depends on quantity Q .
The results of the experiment are plotted on the graph shown.

A physics textbook states that quantity P is directly proportional to quantity Q .
The students make the following statements about the line of best fit that should be drawn using all the data points plotted.

I The line of best fit passes through the origin.
II The line of best fit does not pass through the origin.
III The line of best fit suggests the measurements have been affected by a systematic uncertainty.

Which of these statements is/are correct?

A I only
B II only
C III only
D I and III only
E II and III only
25. The mass m of a vibrating string can be determined using the following relationship.

$$
f=\sqrt{\frac{T}{4 m L}}
$$

where f is the fundamental frequency
T is the tension
L is the length of the string.
For a particular string the following measurements are recorded:
$f=110 \mathrm{~Hz}$
$T=92 \mathrm{~N}$
$L=0.63 \mathrm{~m}$.
Based on this information the mass of this string is
A $3.0 \times 10^{-3} \mathrm{~kg}$
B $\quad 1.2 \times 10^{-2} \mathrm{~kg}$
C $3.3 \times 10^{-1} \mathrm{~kg}$
D $5.8 \times 10^{-1} \mathrm{~kg}$
E $\quad 3.3 \times 10^{2} \mathrm{~kg}$.

WEDNESDAY, 17 MAY
10:15 AM - 12:30 PM

Fill in these boxes and read what is printed below.

Full name of centre
\square

Town

Forename(s)
Surname
Number of seat

\square
Date of birth

Total marks - 130
Attempt ALL questions.

You may use a calculator.

Reference may be made to the Data Sheet on page 02 of this booklet and to the relationship sheet X857/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. Score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	$m_{\text {e }}$	$9.11 \times 10^{-31} \mathrm{~kg}$
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Gravitational acceleration on Earth	g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Hubble's constant	H_{0}	$2.3 \times 10^{-18} \mathrm{~s}^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength (nm)	Colour	Element	Wavelength (nm)	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength (nm)	Colour
Sodium		Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	Melting point (K)	Boiling point (K)
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

* X 857760103 *

Attempt ALL questions

1. A van is travelling along a straight, level road at a constant speed of $13.4 \mathrm{~m} \mathrm{~s}^{-1}$ as it approaches a set of traffic lights. The driver sees the lights change to red and applies the brakes.

The van has a constant acceleration of $-2.85 \mathrm{~m} \mathrm{~s}^{-2}$ before coming to rest at the traffic lights.

(a) Calculate the distance travelled by the van during braking.

Space for working and answer

1. (continued)
(b) Calculate the time taken for the van to come to rest during braking.

Space for working and answer
(c) Complete the sketch graph of velocity against time for the van's motion during braking.
Numerical values are required on both axes.
(An additional graph, if required, can be found on page 43.)

[Turn over
2. An adult with a child is cycling along a straight level path. The child is in a trailer, which is connected to the bike by a tow bar.

The combined mass of the bike and the adult is 85 kg .
The combined mass of the child and trailer is 28 kg .
The forward force on the bike and trailer is 125 N .
A frictional force of 45 N acts on the bike.
A frictional force of 15 N acts on the trailer.
(a) Show that the acceleration of the bike and trailer is $0.58 \mathrm{~m} \mathrm{~s}^{-2}$.

Space for working and answer
2. (continued)
(b) Determine the magnitude of the tension in the tow bar.

Space for working and answer
(c) As the speed of the bike and trailer increases, the friction forces on both the bike and the trailer increase.
The acceleration of the bike and trailer remains $0.58 \mathrm{~m} \mathrm{~s}^{-2}$.
State whether the tension in the tow bar increases, decreases, or stays the same.
Justify your answer.
3. During a practice session for a Grand Prix, two Formula 1 cars collide in the pit lane.

Car X has a mass of 760 kg and is travelling at $12.0 \mathrm{~m} \mathrm{~s}^{-1}$.
Car Y has a mass of 840 kg and is travelling at $4.0 \mathrm{~m} \mathrm{~s}^{-1}$.

The cars collide and move off separately.
Car Y moves off with a velocity of $8.5 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Calculate the velocity of car X immediately after the collision.
3. (continued)
(b) Show by calculation that the collision is inelastic.

Space for working and answer
(c) During the collision, the cars are in contact for 0.82 s .

Calculate the magnitude of the average force car X exerts on car Y .

Space for working and answer
3. (continued)
(d) One safety feature on Formula 1 racetracks is the use of tyre walls on bends. Tyre walls are designed to protect the driver in the event of their car leaving the track.

Explain how tyre walls protect the driver.

* X 857760111 *

4. Two trains depart from a station at the same time. The trains travel side by side in the same direction, along parallel tracks.

Train A is travelling at $3.5 \mathrm{~m} \mathrm{~s}^{-1}$ relative to the platform and train B is travelling at $4.0 \mathrm{~m} \mathrm{~s}^{-1}$ relative to the platform.

(a) Determine the speed of train B relative to train A.

Space for working and answer
(b) Once the trains are moving, a passenger on train A walks towards the rear of the train at a speed of $1.3 \mathrm{~m} \mathrm{~s}^{-1}$.

Determine the speed of the passenger on train A relative to a passenger seated on train B.

Space for working and answer
4. (continued)
(c) Two physics students on train A are discussing the possibility of travelling at relativistic speeds. The students consider the train travelling at a speed of $0.9 c$ relative to a stationary observer.
(i) The train emits a beam of light towards the stationary observer.

State the speed of the emitted light as measured by the stationary observer.

Justify your answer.
(ii) Train A has a length of 142 m , as measured in the frame of reference of the students on the train.

Calculate the length of train A when travelling at $0.9 c$ as measured by the stationary observer.
Space for working and answer

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

* X 857760114 *

5. A person is standing at the side of a road. A police car approaches and then passes the person at a constant speed of $31 \mathrm{~m} \mathrm{~s}^{-1}$. A siren on the police car emits sound with a frequency of 440 Hz .

(a) (i) Calculate the frequency of the sound heard by the person as the police car approaches.

The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
Space for working and answer
(ii) State whether the frequency of the sound heard by the person as the police car moves away is greater than, the same as, or less than the frequency heard by the person as the police car approached.

You must justify your answer.
5. (continued)
(b) The emergency lights on top of the police car consist of an array of red LEDs and blue LEDs. A simplified diagram of the lighting circuit is shown.

The red LEDs and blue LEDs each flash twice per second.
(i) Determine the period of the AC supply used.

Space for working and answer
(ii) Explain why the red LEDs and the blue LEDs do not light at the same time.
5. (b) (continued)
(iii) An energy band diagram for a red LED is shown.

A photon of wavelength 625 nm is emitted when an electron falls from the conduction band to the valence band, across the energy band gap.
(A) Determine the energy of the emitted photon.

Space for working and answer
(B) Explain, in terms of the energy band gaps, the difference between photons emitted by the red LEDs and photons emitted by the blue LEDs.
6. The song History of Everything, used as the theme from the TV show The Big Bang Theory, contains the following lyrics.
"Our whole universe was in a hot, dense state Then nearly fourteen billion years ago expansion started, wait. . .

Since the dawn of man is really not that long
As every galaxy was formed in less time than it takes to sing this song A fraction of a second and the elements were made. . .

It's expanding ever outward but one day
It will cause the stars to go the other way. . ."
(Written by Ed Robertson and Steven Page)
Using your knowledge of physics, comment on these lyrics.
6. (continued)

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE
7. Beta decay occurs when a neutron in an unstable nucleus decays into a proton and releases an electron and an antineutrino.

The following statement represents an example of beta decay.

$$
{ }_{P}^{131} Z \rightarrow{ }_{54}^{131} \mathrm{Xe}+{ }_{-1}^{0} e+\bar{v}_{e}
$$

(a) (i) (A) Determine the number represented by P.

Space for working and answer
(B) Identify element Z.
(ii) (A) In the Standard Model, state the type of fermion that includes electrons.
(B) W-bosons and Z-bosons are the force-mediating particles associated with beta decay.
Name the fundamental force associated with beta decay.
7. (continued)
(b) Positron Emission Tomography (PET) is a medical imaging technique, which uses isotopes that emit positrons.
Suitable isotopes are produced by bombarding a target with protons that have been accelerated in a cyclotron. A cyclotron consists of two D-shaped, hollow metal structures called 'dees', placed in a vacuum.
The diagram shows the cyclotron viewed from above.

Protons are released from rest at R and are accelerated across the gap between the 'dees' by a voltage of 32.0 kV .
(i) Determine the speed of a proton as it reaches S .

Space for working and answer
7. (b) (continued)
(ii) Explain why an alternating voltage is used in the cyclotron.
(c) A proton enters a region of magnetic field as shown.

Determine the direction of the force exerted by the magnetic field on the proton immediately after entering the magnetic field.
-•••••••• pronimmelyang
8. A student carries out an experiment to verify the inverse square law for a point source of light.
(a) Describe an experiment to verify the inverse square law for a point source of light.
(b) The student records the following data from their experiment.

Distance \boldsymbol{d} (m)	0.200	0.300	0.400	0.500	0.600
Irradiance \boldsymbol{I} $\left(\mathrm{W} \mathrm{m}^{-2}\right)$	142.0	63.1	35.5	22.7	15.8

(i) State what is meant by the term irradiance.
8. (b) (continued)
(ii) Use all the data to establish the relationship between irradiance I and distance d.

Space for working and answer
(c) Explain why the irradiance decreases when the distance from a point source of light increases.
9. The use of analogies from everyday life can help improve the understanding of physics concepts.
A group of students is discussing whether a vending machine can be used as an analogy for the photoelectric effect.

One student states "It’s like putting money into a vending machine. You won't get your snack unless you have enough money, no matter how many coins you put in. If you put in too much money, your snack will come out of the vending machine and you will get change back."
Using your knowledge of physics, comment on this analogy.
9. (continued)
10. The Bohr model of the hydrogen atom can be represented by the diagram shown.

(a) One of the features of the Bohr model of the hydrogen atom is that the electron can only occupy discrete energy levels.
State one other feature of the Bohr model of the hydrogen atom.
(b) The line emission spectrum from a hydrogen discharge lamp has four lines in the visible region of the electromagnetic spectrum, as shown.

(i) Explain how a line emission spectrum is produced.
(ii) Explain why some of these lines appear brighter than others.
10. (continued)
(c) Some of the energy levels of the hydrogen atom are shown.

(i) State the number of possible emission lines caused by the transition of electrons between the energy levels shown.
(ii) (A) One of the emission lines produced is due to electron transitions from E_{4} to E_{1}.
Calculate the frequency of the photon emitted when an electron makes this transition.
Space for working and answer
10. (c) (ii) (continued)
(B) The photons produced by a different electron transition correspond to the blue-green spectral line in the hydrogen emission spectrum. State the wavelength of these photons.
(C) A distant galaxy has a recessional velocity of $4.52 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$. The hydrogen emission spectrum from the distant galaxy is viewed on Earth.

Determine the observed wavelength of the same spectral line as in (c) (ii) (B), when viewed on Earth.

Space for working and answer
11. A ray of blue light is incident on a triangular glass prism as shown.

The refractive index of the glass for this blue light is 1.53 .
(a) (i) Calculate angle A.

Space for working and answer
(ii) Determine angle B.

Space for working and answer
(b) (i) State what is meant by the term critical angle.
(ii) Calculate the critical angle for this blue light in the glass prism.

Space for working and answer
(c) Complete the diagram below to show the path of the ray after it is incident on the glass-air boundary at the right-hand side of the prism.

Mark on the diagram the value of the angle between this ray and the normal after it is incident on this glass-air boundary.
(An additional diagram, if required, can be found on page 43.)

12. A battery has an EMF of 12 V and internal resistance r. The battery is connected in a circuit as shown.

(a) The reading on the ammeter is 0.38 A .
(i) Determine the terminal potential difference (t.p.d.) of the battery.

Space for working and answer
(ii) Calculate the internal resistance r of the battery.
12. (a) (continued)
(iii) Calculate the power dissipated by the internal resistance of the battery.

Space for working and answer
(b) The circuit is now rearranged as shown.

State whether the power dissipated by the internal resistance of the battery is greater than, equal to, or less than the value determined in (a) (iii).
You must justify your answer.
13. A student uses the circuit shown to determine the capacitance of a capacitor.

The capacitor is initially uncharged. The student closes the switch and the capacitor charges fully.

The student then measures the charge stored on the capacitor using a coulombmeter.

The student records the following measurements:
potential difference across the capacitor (5.7 ± 0.1) V;
charge stored on the capacitor (136.8 ± 0.1) mC.
(a) (i) Using these measurements, calculate the capacitance of the capacitor. Space for working and answer
13. (a) (continued)
(ii) Determine the absolute uncertainty in the capacitance of the capacitor. Space for working and answer
(b) The student discharges the capacitor and then connects it in the circuit shown.

The student closes switch S and the capacitor charges.
The time t taken for the capacitor to charge fully can be estimated using the relationship

$$
t=5 R C
$$

where the symbols have their usual meaning.
Calculate the estimated time taken for the capacitor to charge fully.
Space for working and answer
14. A student carries out an experiment to determine the value of Planck's constant h, using various LEDs.
An LED that produces light of known frequency f is connected into the circuit as shown.

The student adjusts the voltage output of the variable power supply until they see the LED start to emit light.

The student records the potential difference across the LED at this point. This is the switch-on voltage V of the LED.

The student repeats this procedure using a number of LEDs, each producing light of a different known frequency.
To determine a value for Planck's constant, the student uses the relationship

$$
e V=h f
$$

where e is the charge on an electron.
The results obtained by the student are shown in the table.

$f\left(\times 10^{14} \mathrm{~Hz}\right)$	$V(\mathrm{~V})$
4.5	1.38
5.0	1.62
5.1	1.65
5.3	1.74
6.4	2.32

[^0]14. (continued)
(b) Calculate the gradient of your graph.

Space for working and answer
(c) Using the gradient of your graph, determine a value for Planck's constant h.

Space for working and answer
(d) Suggest one improvement to the experiment the student could make that would improve the accuracy of their final result.

Additional table for use with question 14 (a)

$f\left(\times 10^{14} \mathrm{~Hz}\right)$	$V(\mathrm{~V})$
4.5	1.38
5.0	1.62
5.1	1.65
5.3	1.74
6.4	2.32

Additional graph for use with question 1 (c)

Additional diagram for use with question 11 (c)

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

* X 857760146 *

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

* $\times 85776014$ 7*

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Acknowledgement of copyright

Question 2 Brocreative/shutterstock.com
Question 4 Iscotlanda Photography/shutterstock.com
Question 6 Lyrics are taken from 'The History of Everything’ (Theme Song of The Big Bang Theory) by Ed Robertson and Steven Page.
SQA has made every effort to trace the owners of copyright of this item and seek permissions. We are happy to discuss permission requirements and incorporate any missing acknowledgement. Please contact question.papers@sqa.org.uk.

[^0]: (a) Using the square-ruled paper on page 40, draw a graph of V against f.
 (The table of results is also shown on page 41, opposite the square-ruled paper).

